Multiplicity of positive solutions for fractional elliptic systems involving sign-changing weight
نویسنده
چکیده
In this paper, we study the multiplicity results of positive solutions for a fractional elliptic system involving both concave-convex and critical growth terms. With the help of Morse theory and the Ljusternik-Schnirelmann category, we investigate how the coefficient h(x) of the critical nonlinearity affects the number of positive solutions of that problem and we get some results as regards the relationship between the number of positive solutions and the topology of the global maximum set of h.
منابع مشابه
Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
متن کاملExistence and multiplicity of nontrivial solutions for $p$-Laplacian system with nonlinearities of concave-convex type and sign-changing weight functions
This paper is concerned with the existence of multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions. With the help of the Nehari manifold and Palais-Smale condition, we prove that the system has at least two nontrivial positive solutions, when the pair of parameters $(lambda,mu)$ belongs to a c...
متن کاملMultiplicity of positive solutions for critical singular elliptic systems with sign - changing weight function ∗
In this paper, the existence and multiplicity of positive solutions for a critical singular elliptic system with concave and convex nonlinearity and sign-changing weight function, are established. With the help of the Nehari manifold, we prove that the system has at least two positive solutions via variational methods.
متن کاملMultiplicity of Positive Solution of p-Laplacian Problems with Sign-Changing Weight Functions
In this paper, we study the multiplicity of positive solutions for the p-Laplacian problems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic equation has at least two positive solutions.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کامل